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Abstract

We determine the instanton corrections to the e�ective coupling in SU(2),

N =2 Yang-Mills theory with four avours to all orders. Our analysis uses the

S(2; Z)-invariant curve and the two instanton contribution obtained earlier to �x

the higher order contributions uniquely.



1 Introduction

Seiberg and Witten [1, 2] proposed exact results for SU(2), N = 2 supersymmetric

Yang-Mills theory with and without matter multiplets. These include, in particular

an exact expression for the mass spectrum of BPS-states for these theories. Their

solutions also provide a mechanism, based on monopole condensation, for chiral sym-

metry breaking and con�nement in N = 2 Yang-Mills with and without coupling to

fundamental hypermutiplets respectively. The results of Seiberg and Witten have been

generalised to a variety of gauge groups [3] describing a number of interesting new

phenomena [4].

On another front the low energy e�ective theories arising from non-Abelian YM-

theory have been identi�ed with those describing the low energy dynamics of certain

intersecting brane con�gurations in string theory [5]. The latter approach provides

an elegant geometrical representation of the low energy dynamics of strongly coupled

supersymmetric gauge theory.

For gauge groups SU(2) and NF � 3 massless avours it has since been shown

that the solution [1, 2] are indeed the only ones compatible with supersymmetry and

asymptotic freedom in these theories [6]. However, a number of issues have still resisted

an exact treatment so far. In particular the precise relation between the low energy

e�ective coupling �eff and the microscopic coupling � in the scale invariant NF = 4

theory has not been understood so far. Indeed, while the two couplings were �rst

assumed to be identical in [2] it was later found by explicit computation that there

are, in fact, perturbative and instanton corrections [7]. On the other hand, explicit

instanton calculus is so far limited to topological charge k � 2. A related observation

has been made in the D-brane approach to scale invariant theories. The details of the

conclusions reached there are, however, somewhat di�erent [8].

The purpose of the present paper is to �ll this gap. Our analysis uses a combination

of analytic results from the theory of conformal mappings combined with the known

results form instanton calculus. More precisely we consider the sequence � 7! z 2
C 7! �eff . We will then argue that given the Seiberg-Witten curve together with some

suitable assumptions on the singular behaviour of the instanton contributions there is a

one-parameter family of admissible maps �eff 7! � . The remaining free parameter is in

turn determined by the two-instanton contribution to the asymptotic expansion at weak

coupling. This coe�cient has been computed explicitly in [7]. This then determines

the map completely. Although we are not able to give a closed form of the map

� 7! �eff globally the higher order instanton coe�cients can be determined iteratively.

We further discuss some global properties of the map qualitatively. In particular we

will see that it is not single valued meaning that the instanton corrections lead to a cut

in the strong coupling regime. In this note we restrict ourselvs to gauge group SU(2)

leaving the extension to higher groups [9] for future work.

2 Review of N=2 Yang-Mills with 4 Flavours

To prepare the ground let us �rst review some of the relevant features [2] of the theory

of interest, that is N=2 YM-theory with 4 hypermultiplets Qr and ~Qr, r=1; � � � ; 4, in
the fundamental representation. In N =1 language the hypermultiplets are described
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by two chiral multiplets containing the left handed quarks and antiquarks respectively.

These are in isomorphic representations of the gauge group SU(2). The global symme-

try group therefore contains a SO(8) or, more precisely, a O(8) due to invariance under

the Z2 \parity" which exchanges a left handed quark with its antiparticle, Q1 $ ~Q1,

with all other �elds invariant. At the quantum level this Z2 is anomalous due to the

contributions from odd instantons.

We consider the Coulomb branch with constant scalar '=a 6= 0 in the N=2 vector

multiplet. This breaks the gauge group SU(2) ! U(1). The charged hypermultiplets

then have mass M =
p
2jaj and transform as a vector under SO(8), rather than O(8)

due to the Z2-anomaly. In addition, there are magnetic monopoles solutions leading

to 8 fermionic zero modes from the 4 hypermultiplets. These turn the monopoles

into spinors of SO(8). The symmetry group is therefore the universal cover of SO(8)

or Spin(8) with centre Z2 � Z2. Following [2] we label the representations Z2 � Z2

by according to the Spin(8) representations, that is the trivial representation o, the

vector representation v and the two spinor representations s and c. To decide in

which spinor representation the monopoles and dyons transform one considers the

action of an electric charge rotation e�iQ on these states. Here the electric charge

Q is normalised such that the massive gauge bosons have charge �2. This action is

conveniently described by

e�iQ = einm�(�1)H ; (1)

where states with even, odd ne are (�1)H even, odd respectively. On the other hand,

for consistency, the monopole anti-monopole annihilation process requires a correlation

between chirality in Spin(8) and electric charge [2]. We therefore identify (�1)H with

the chirality operator in the spinor representations of Spin(8). Hence dyons with even

and odd electric charge transform in one or the other spinor representation of Spin(8)

respectively.

The outer automorphism S3 of Spin(8) that permutes the three non-trivial repre-

sentations v, s and c is closely connected to the proposed duality group SL(2;Z) of the

quantum theory. Indeed there is a homomorphism SL(2;Z) ! S3, so that the invari-

ance group of the spectrum is given by the semi direct product Spin(8) and SL(2;Z).

The kernel of this homomorphism plays an important part in our analysis below. It

consists of the elements in SL(2;Z) that commute with the global symmetry group

SL(2;Z). These are the matrices congruent to 1 (mod(2)). They are conjugate to the

subgroup �0(2). The fundamental domain of this subgroup is the space of inequivalent

coupling in the analysis presented below.

One can further formalise this structure in terms of the hyperelliptic curve that

controls the low energy behaviour of the model [2]. For this one seeks a curve y2 =

F (x; u; � ) such that the di�erential form

! =

p
2

8�

dx

y
(2)

has the periods (@aD
@u

; @a
@u
) with (aD; a) given by [2]

a =

r
u

2
and aD = �effa (3)
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where �eff [7] is the low energy e�ective coupling whose dependence on the microscopic

coupling � will be determined below. The correct curve consistent with SL(2;Z) duality

is given by [2]

y2 = (x� ue1(� ))(x� ue2(� ))(x� ue2(� )); (4)

where ei(� ) are the modular forms corresponding to the three subgroups of SL(2;Z),

conjugate to the index 3 subgroup �0(2). An equivalent form of the curve is obtained

by rescaling x=x0u; y=
1

2
y0u

3=2 i.e.

y2
0
= (x0 � e1(� ))(x0 � e2(� ))(x0 � e2(� )): (5)

3 Map: � 7! �eff

We now have the necessary ingredients to determine the precise relation between �eff
and � . We begin with the observation that, according to the structure of the e�ective

theory presented above, the fundamental domain D� of any of the three subgroups

conjugate to �0(2) can be used as the space of inequivalent e�ective couplings. The

three choices are then related by the Spin(8) \triality" relating the 3 di�erent non-trivial

representations v, s and c. Each fundamental domain is described by a triangle in the

upper half plane (Im(� ) � 0), bounded by circular arcs [10]. The 3 singularities are

conjugate to the points (i1;�1; 1) corresponding to the weak coupling regime,massless

monopoles and massless dyons with charge (nm; ne)=(1; 1) mod(2) respectively.

In the absence of perturbative- and instanton corrections the e�ective coupling is

identi�ed with the microscopic coupling � . This applies to N = 4 theories. In the

scale invariant N = 2 theory considered here the situation is di�erent. As shown in

[7], the e�ective coupling is �nitely renormalised at the one loop level and furthermore

receives instanton corrections. Some information about the fundamental domain �D of

microscopic couplings � is obtained from the following observations:

a) As the microscopic coupling does not enter in the mass formula, its fundamental

domain is not constrained to be that of a subgroup of SL(2;Z) [6]. Nevertheless

we require that the imaginary part of � be bounded from below. Correspondingly

the di�erent determinations of � for a given �eff are related by a transformation in

PSL(2; IR). Hence,

� 2 C[H=G] where G � PSL(2; IR); (6)

where C[ ] denotes a certain covering. This is a domain bounded by circular arcs,

conformally equivalent to the punctured 2-sphere, C � fa1; � � � ; ang [10].
b) We know of no principle excluding the possibility that the number of vertices of

�D be di�erent from that of D�. On the other hand such extra singularities have no

obvious physical interpretation. We therefore discard this possibility.

Equipped with this information we will now determine the homomorphism that

maps D� into the fundamental domain of microscopic couplings1 �D. It follows from

general arguments [2, 7] that this map has an expansion of the form

�eff =
1X
n=0

cnq
n where q = e�i� (7)

1As will become clear below the two domains cannot be isomorphic.
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The coe�cients ci, represent the perturbative one-loop (i= 0) and instanton (i > 0)

corrections respectively. The contributions from odd instantons to �eff vanishes. This

is due the fact that the part of the e�ective action determining the e�ective coupling

is invariant under the Z2-"parity". The �rst two non-vanishing coe�cients of the

expansion (7) are known [7]

c0 =
i

�
4 ln 2 and c2 = �

i

�

7

25 � 36 : (8)

To continue we use some elements of the theory of conformal mappings [10]. That

is we consider the maps from the punctured 2-sphere S = C�fa1; � � � ; ang to polygons
in the upper half plane, bounded by circular arcs. Concretely we consider the sequence

�eff 7! z 2 S 7! � (see Fig.1). The form of such mappings is generally complicated.

However, their Schwarzian derivative takes a remarkably simple form [10]

f�; zg =
X
i

1

2

1� �2i
(z � ai)2

+
�i

z � ai
: (9)

The parameters �i measure the angles of the polygon in units of �. The accessory pa-

rameters �i do not have a simple geometric interpretation but are determined uniquely

up to a SL(2;C) transformation of S. Furthermore they satisfy the conditions [10]

nX
i=1

�i = 0 ;
nX
i=1

h
2ai�i + 1� �2i

i
= 0;

nX
i=1

h
�ia

2

i + ai
�
1� �2i

�i
= 0 (10)

In the present situation it is convenient to orient the polygons such that they have

a vertex at in�nity with zero angle (see Fig. 1 ) corresponding to the weak coupling

singularity (� =�eff= i1). The above conditions then simplify to

1X
i=1

�i = 0 (11)

n�1X
i=1

�
2ai�i � �2i

�
= (2� n):

As explained at the beginning of this section, in the case at hand, the polygon

on the �eff -side corresponds to the fundamental domain of �0(2). The corresponding

parameters (ai; �i; �i) are given by [6]

a1 = a�1 = �1; �1 = ��1 = �1

4
; �i = 0: (12)

The parameters for the polygon on the � -side, (~ai; ~�i; ~�i) are to be determined. How-

ever, the conditions (11) together with the symmetry � ! ��� leaves only one free

parameter. Indeed, without restricting the generality we can choose ~ai= ai. Further-

more ~�i=�~�i. Then (11) implies

~��1 = �~�1 =
1

4

�
1� 2~�1

2
�

(13)
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leaving only one parameter, ~�1 say, undetermined. As we shall now see this parameter

is in turn determined by the two instanton contribution in (7). For this we make use

of the identity

f�; �effg
 
@�eff

@z

!2
= f�; zg � f�eff ; zg (14)

=
~n�1X
i=1

1

2

1 � ~�2i
(z � ~ai)2

+
~�i

(z � ~ai)
�

n�1X
i=1

1

2

1� �2i
(z � ai)2

+
�i

(z � ai)
:

To continue we invert (7) as

� = �eff � c0 � c2e
�2�ic0qeff +

�
2�ic22 � c4

�
e�4�ic0q2eff +O(q4eff ): (15)

Finally we need the form of �eff (z), that is the inverse modular function for �0(2)

[11, 6]

�eff = i
2F1

�
1

2
; 1
2
; 1; �1+z

1+z

�
2F1

�
1

2
; 1
2
; 1; 2

1+z

� (16)

This function has the asymptotic expansion for large z

�eff (z) =
i

�

�
3 ln 2 + ln z � 5

16

1

z2

�
+O(z�3): (17)

Substituting (17) into the right hand side of (14) we end up with

�f�; �effg
 
@�eff

@z

!2
=

7

2 � 35
1

z4
+

�
7 � 7213
25 � 310 + 210i�c4

�
1

z6
(18)

Substitution of (18) into (14) then leads to

~�1
2 =

7

22 � 35 (19)

which then �xes the erstwhile free parameter in f�; zg. This is the result we have been
aiming at. Indeed all higher instanton coe�cients are now determined implicitly by

the equation

f�; �effg =
 

@z

@�eff

!2
[f�; zg � f�eff ; zg] : (20)

In order to integrate (14) one notices [11] that any solution of (9) can be written

as a quotient

� (z) =
(u1(z) + du2(z))

(eu1(z) + fu2(z))
; (21)

where u1; u2 are two linearly independent solutions of the hypergeometric di�erential

equation

(1 + z)(1 � z)
d2

dz2
u(z) + ((c� 2)z + c� 2a� 2b)

d

dz
u(z) +

2ab

1 + z
= 0; (22)
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Figure 1:

with

c = 1; ; b(c� a) + a(c� b) =
1

2
and (a� b)2 = ~�2

1
: (23)

The coe�cients d; e; f are in turn determined by the asymptotic expansion

� (z) =
i

�
ln
z

2
+

i

8�
z�2

�
�5

2
+

7

36

�
+O(z�4): (24)

Substitution of z in (21) by

z(�eff) � ��1 =
2

�0(�eff )
� 1; (25)

where �0 is the automorphic function

��1eff : �eff 7! �0 2 C; (26)

�0(�eff ) = 16qe

1Y
n=1

 
1 + q2ne
1 + q2n�1e

!8
with qe = exp(i��eff);

then integrates (14) (Fig. 1). To extract the instanton coe�cients one needs to invert

the map �eff (� ). We have done this to O(q4) allowing us to predict the 4-instanton

coe�cient

c4 =
i

�

7 � 17 � 421
26 � 310 � 521 : (27)

We close with the observation that globally the inverse function �eff (� ) cannot be

single valued. Indeed, existence of a single valued inverse function z(� ) requires ~�1=p

or � = 1=p, p 2 Z [11]. The physical interpretation is that the instanton corrected

e�ective coupling �eff (� ) has a cut somewhere in the strong coupling region. It would

be interesting to understand this property from the physics side.
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